skip to main content


Search for: All records

Creators/Authors contains: "Diamond, Sarah E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    Decades of research have illuminated the underlying ingredients that determine the scope of evolutionary responses to climate change. The field of evolutionary biology therefore stands ready to take what it has learned about influences upon the rate of adaptive evolution—such as population demography, generation time, and standing genetic variation—and apply it to assess if and how populations can evolve fast enough to “keep pace” with climate change. Here, our review highlights what the field of evolutionary biology can contribute and what it still needs to learn to provide more mechanistic predictions of the winners and losers of climate change. We begin by developing broad predictions for contemporary evolution to climate change based on theory. We then discuss methods for assessing climate‐driven contemporary evolution, including quantitative genetic studies, experimental evolution, and space‐for‐time substitutions. After providing this mechanism‐focused overview of both the evidence for evolutionary responses to climate change and more specifically, evolving to keep pace with climate change, we next consider the factors that limit actual evolutionary responses. In this context, we consider the dual role of phenotypic plasticity in facilitating but also impeding evolutionary change. Finally, we detail how a deeper consideration of evolutionary constraints can improve forecasts of responses to climate change and therefore also inform conservation and management decisions.

    This article is categorized under:

    Climate, Ecology, and Conservation > Observed Ecological Changes

    Climate, Ecology, and Conservation > Extinction Risk

    Assessing Impacts of Climate Change > Evaluating Future Impacts of Climate Change

     
    more » « less
  3. Although research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology. 
    more » « less
  4. null (Ed.)
    ABSTRACT Cities are emerging as a new venue to overcome the challenges of obtaining data on compensatory responses to climatic warming through phenotypic plasticity and evolutionary change. In this Review, we highlight how cities can be used to explore physiological trait responses to experimental warming, and also how cities can be used as human-made space-for-time substitutions. We assessed the current literature and found evidence for significant plasticity and evolution in thermal tolerance trait responses to urban heat islands. For those studies that reported both plastic and evolved components of thermal tolerance, we found evidence that both mechanisms contributed to phenotypic shifts in thermal tolerance, rather than plastic responses precluding or limiting evolved responses. Interestingly though, for a broader range of studies, we found that the magnitude of evolved shifts in thermal tolerance was not significantly different from the magnitude of shift in those studies that only reported phenotypic results, which could be a product of evolution, plasticity, or both. Regardless, the magnitude of shifts in urban thermal tolerance phenotypes was comparable to more traditional space-for-time substitutions across latitudinal and altitudinal clines in environmental temperature. We conclude by considering how urban-derived estimates of plasticity and evolution of thermal tolerance traits can be used to improve forecasting methods, including macrophysiological models and species distribution modelling approaches. Finally, we consider areas for further exploration including sub-lethal performance traits and thermal performance curves, assessing the adaptive nature of trait shifts, and taking full advantage of the environmental thermal variation that cities generate. 
    more » « less
  5. Abstract Transformative governance is key to addressing the global environmental crisis. We explore how transformative governance of complex biodiversity–climate–society interactions can be achieved, drawing on the first joint report between the Intergovernmental Panel on Climate Change and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services to reflect on the current opportunities, barriers, and challenges for transformative governance. We identify principles for transformative governance under a biodiversity–climate–society nexus frame using four case studies: forest ecosystems, marine ecosystems, urban environments, and the Arctic. The principles are focused on creating conditions to build multifunctional interventions, integration, and innovation across scales; coalitions of support; equitable approaches; and positive social tipping dynamics. We posit that building on such transformative governance principles is not only possible but essential to effectively keep climate change within the desired 1.5 degrees Celsius global mean temperature increase, halt the ongoing accelerated decline of global biodiversity, and promote human well-being. 
    more » « less
  6. null (Ed.)